Catalytic probe lithography: catalyst-functionalized scanning probes as nanopens for nanofabrication on self-assembled monolayers.
نویسندگان
چکیده
This article describes the use of scanning catalytic probe lithography for nanofabrication of patterns on self-assembled monolayers (SAMs) of reactive adsorbates. Catalytic writing was carried out by scanning over bis(omega-tert-butyldimethyl-siloxyundecyl)disulfide SAMs using 2-mercapto-5-benzimidazole sulfonic acid-functionalized gold-coated AFM tips. The acidic tips induced local hydrolysis of the silyl ether moieties in the contacted areas, and thus patterned surfaces were created. Diffusion effects arising from the use of an ink were excluded in these type of experiments, and therefore structures with well-defined shapes and sizes were produced. The smallest lines drawn by this technique were about 25 nm wide, corresponding to the actual contact area of the tip. Lateral force microscopy studies performed on different SAMs helped to clarify the nature and cause of the friction contrasts observed by AFM. Dendritic wedges with thiol functions inserted into the catalytically written areas, thus enhancing the height contrast. The created patterns open possibilities to build 3D nanostructures.
منابع مشابه
Scanning probe lithography of self-assembled monolayers
Systematic studies on scanning probe lithography (SPL) methodologies have been performed using self-assembled monolayers (SAMs) on Au as examples. The key to achieving high spatial precision is to keep the tip-surface interactions strong and local. Approaches include three atomic force microscopy (AFM) based methods, nanoshaving, nanografting, and nanopen reader and writer (NPRW), which rely on...
متن کاملPhotocatalytic Nanolithography of Self-Assembled Monolayers and Proteins
Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Aper...
متن کامل-functionalized self-assembled monolayers chemisorbed on ultraflat Au(111) surfaces for biological scanning probe microscopy in aqueous buffers
Two immobilization procedures for ultimately carrying out scanning probe microscopy of native biological macromolecules in buffer solution are presented. They are based on the preparation of ultraflat template-stripped gold surfaces and subsequent chemisorption of bioreactive -functionalized self-assembled monolayers. Immobilization was achieved either via amide bond formation or diazo linkage....
متن کاملPNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors.
The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-termi...
متن کاملNanoscale lithography mediated by surface self-assembly of 16-[3,5-bis(mercaptomethyl)phenoxy]hexadecanoic acid on Au(111) investigated by scanning probe microscopy.
The solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either monolayer or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 37 شماره
صفحات -
تاریخ انتشار 2004